Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(2): 225-249, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177503

RESUMO

Respiratory complex I (NADH:ubiquinone oxidoreductase) is essential for cellular energy production and NAD+ homeostasis. Complex I mutations cause neuromuscular, mitochondrial diseases, such as Leigh Syndrome, but their molecular-level consequences remain poorly understood. Here, we use a popular complex I-linked mitochondrial disease model, the ndufs4-/- mouse, to define the structural, biochemical, and functional consequences of the absence of subunit NDUFS4. Cryo-EM analyses of the complex I from ndufs4-/- mouse hearts revealed a loose association of the NADH-dehydrogenase module, and discrete classes containing either assembly factor NDUFAF2 or subunit NDUFS6. Subunit NDUFA12, which replaces its paralogue NDUFAF2 in mature complex I, is absent from all classes, compounding the deletion of NDUFS4 and preventing maturation of an NDUFS4-free enzyme. We propose that NDUFAF2 recruits the NADH-dehydrogenase module during assembly of the complex. Taken together, the findings provide new molecular-level understanding of the ndufs4-/- mouse model and complex I-linked mitochondrial disease.


Assuntos
Doença de Leigh , Doenças Mitocondriais , Animais , Camundongos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Doença de Leigh/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , NAD/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo
2.
Nat Commun ; 14(1): 7725, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001082

RESUMO

Current therapies for myeloproliferative neoplasms (MPNs) improve symptoms but have limited effect on tumor size. In preclinical studies, tamoxifen restored normal apoptosis in mutated hematopoietic stem/progenitor cells (HSPCs). TAMARIN Phase-II, multicenter, single-arm clinical trial assessed tamoxifen's safety and activity in patients with stable MPNs, no prior thrombotic events and mutated JAK2V617F, CALRins5 or CALRdel52 peripheral blood allele burden ≥20% (EudraCT 2015-005497-38). 38 patients were recruited over 112w and 32 completed 24w-treatment. The study's A'herns success criteria were met as the primary outcome ( ≥ 50% reduction in mutant allele burden at 24w) was observed in 3/38 patients. Secondary outcomes included ≥25% reduction at 24w (5/38), ≥50% reduction at 12w (0/38), thrombotic events (2/38), toxicities, hematological response, proportion of patients in each IWG-MRT response category and ELN response criteria. As exploratory outcomes, baseline analysis of HSPC transcriptome segregates responders and non-responders, suggesting a predictive signature. In responder HSPCs, longitudinal analysis shows high baseline expression of JAK-STAT signaling and oxidative phosphorylation genes, which are downregulated by tamoxifen. We further demonstrate in preclinical studies that in JAK2V617F+ cells, 4-hydroxytamoxifen inhibits mitochondrial complex-I, activates integrated stress response and decreases pathogenic JAK2-signaling. These results warrant further investigation of tamoxifen in MPN, with careful consideration of thrombotic risk.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Tamoxifeno/uso terapêutico , Tamoxifeno/metabolismo , Mutação , Calreticulina/genética , Calreticulina/metabolismo
3.
Cell Metab ; 35(10): 1799-1813.e7, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37633273

RESUMO

The mammalian respiratory chain complexes I, III2, and IV (CI, CIII2, and CIV) are critical for cellular bioenergetics and form a stable assembly, the respirasome (CI-CIII2-CIV), that is biochemically and structurally well documented. The role of the respirasome in bioenergetics and the regulation of metabolism is subject to intense debate and is difficult to study because the individual respiratory chain complexes coexist together with high levels of respirasomes. To critically investigate the in vivo role of the respirasome, we generated homozygous knockin mice that have normal levels of respiratory chain complexes but profoundly decreased levels of respirasomes. Surprisingly, the mutant mice are healthy, with preserved respiratory chain capacity and normal exercise performance. Our findings show that high levels of respirasomes are dispensable for maintaining bioenergetics and physiology in mice but raise questions about their alternate functions, such as those relating to the regulation of protein stability and prevention of age-associated protein aggregation.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Animais , Camundongos , Transporte de Elétrons , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Mamíferos/metabolismo
4.
Biol Direct ; 18(1): 43, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528429

RESUMO

Antipsychotic drugs are the mainstay of treatment for schizophrenia and provide adjunct therapies for other prevalent psychiatric conditions, including bipolar disorder and major depressive disorder. However, they also induce debilitating extrapyramidal syndromes (EPS), such as Parkinsonism, in a significant minority of patients. The majority of antipsychotic drugs function as dopamine receptor antagonists in the brain while the most recent 'third'-generation, such as aripiprazole, act as partial agonists. Despite showing good clinical efficacy, these newer agents are still associated with EPS in ~ 5 to 15% of patients. However, it is not fully understood how these movement disorders develop. Here, we combine clinically-relevant drug concentrations with mutliscale model systems to show that aripiprazole and its primary active metabolite induce mitochondrial toxicity inducing robust declines in cellular ATP and viability. Aripiprazole, brexpiprazole and cariprazine were shown to directly inhibit respiratory complex I through its ubiquinone-binding channel. Importantly, all three drugs induced mitochondrial toxicity in primary embryonic mouse neurons, with greater bioenergetic inhibition in ventral midbrain neurons than forebrain neurons. Finally, chronic feeding with aripiprazole resulted in structural damage to mitochondria in the brain and thoracic muscle of adult Drosophila melanogaster consistent with locomotor dysfunction. Taken together, we show that antipsychotic drugs acting as partial dopamine receptor agonists exhibit off-target mitochondrial liabilities targeting complex I.


Assuntos
Antipsicóticos , Transtorno Depressivo Maior , Animais , Camundongos , Aripiprazol/farmacologia , Aripiprazol/uso terapêutico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Drosophila melanogaster , Transporte de Elétrons
5.
Sci Adv ; 9(31): eadi1359, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531432

RESUMO

Respiratory complex I, a key enzyme in mammalian metabolism, captures the energy released by reduction of ubiquinone by NADH to drive protons across the inner mitochondrial membrane, generating the proton-motive force for ATP synthesis. Despite remarkable advances in structural knowledge of this complicated membrane-bound enzyme, its mechanism of catalysis remains controversial. In particular, how ubiquinone reduction is coupled to proton pumping and the pathways and mechanisms of proton translocation are contested. We present a 2.4-Å resolution cryo-EM structure of complex I from mouse heart mitochondria in the closed, active (ready-to-go) resting state, with 2945 water molecules modeled. By analyzing the networks of charged and polar residues and water molecules present, we evaluate candidate pathways for proton transfer through the enzyme, for the chemical protons for ubiquinone reduction, and for the protons transported across the membrane. Last, we compare our data to the predictions of extant mechanistic models, and identify key questions to answer in future work to test them.


Assuntos
Complexo I de Transporte de Elétrons , Prótons , Camundongos , Animais , Oxirredução , Complexo I de Transporte de Elétrons/metabolismo , Ubiquinona/química , Ubiquinona/metabolismo , Microscopia Crioeletrônica , Mamíferos/metabolismo , Água/metabolismo
6.
RSC Chem Biol ; 4(6): 386-398, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37292059

RESUMO

Complex I is an essential membrane protein in respiration, oxidising NADH and reducing ubiquinone to contribute to the proton-motive force that powers ATP synthesis. Liposomes provide an attractive platform to investigate complex I in a phospholipid membrane with the native hydrophobic ubiquinone substrate and proton transport across the membrane, but without convoluting contributions from other proteins present in the native mitochondrial inner membrane. Here, we use dynamic and electrophoretic light scattering techniques (DLS and ELS) to show how physical parameters, in particular the zeta potential (ζ-potential), correlate strongly with the biochemical functionality of complex I-containing proteoliposomes. We find that cardiolipin plays a crucial role in the reconstitution and functioning of complex I and that, as a highly charged lipid, it acts as a sensitive reporter on the biochemical competence of proteoliposomes in ELS measurements. We show that the change in ζ-potential between liposomes and proteoliposomes correlates linearly with protein retention and catalytic oxidoreduction activity of complex I. These correlations are dependent on the presence of cardiolipin, but are otherwise independent of the liposome lipid composition. Moreover, changes in the ζ-potential are sensitive to the proton motive force established upon proton pumping by complex I, thereby constituting a complementary technique to established biochemical assays. ELS measurements may thus serve as a more widely useful tool to investigate membrane proteins in lipid systems, especially those that contain charged lipids.

7.
Sci Rep ; 13(1): 6738, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185607

RESUMO

Respiratory complex I is a major cellular energy transducer located in the inner mitochondrial membrane. Its inhibition by rotenone, a natural isoflavonoid, has been used for centuries by indigenous peoples to aid in fishing and, more recently, as a broad-spectrum pesticide or even a possible anticancer therapeutic. Unraveling the molecular mechanism of rotenone action will help to design tuned derivatives and to understand the still mysterious catalytic mechanism of complex I. Although composed of five fused rings, rotenone is a flexible molecule and populates two conformers, bent and straight. Here, a rotenone derivative locked in the straight form was synthesized and found to inhibit complex I with 600-fold less potency than natural rotenone. Large-scale molecular dynamics and free energy simulations of the pathway for ligand binding to complex I show that rotenone is more stable in the bent conformer, either free in the membrane or bound to the redox active site in the substrate-binding Q-channel. However, the straight conformer is necessary for passage from the membrane through the narrow entrance of the channel. The less potent inhibition of the synthesized derivative is therefore due to its lack of internal flexibility, and interconversion between bent and straight forms is required to enable efficient kinetics and high stability for rotenone binding. The ligand also induces reconfiguration of protein loops and side-chains inside the Q-channel similar to structural changes that occur in the open to closed conformational transition of complex I. Detailed understanding of ligand flexibility and interactions that determine rotenone binding may now be exploited to tune the properties of synthetic derivatives for specific applications.


Assuntos
Complexo I de Transporte de Elétrons , Rotenona , Rotenona/farmacologia , Ligantes , Oxirredução , Simulação de Dinâmica Molecular
8.
Elife ; 122023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622099

RESUMO

Respiratory complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from NADH oxidation by ubiquinone to drive protons across an energy-transducing membrane. Drosophila melanogaster is a candidate model organism for complex I due to its high evolutionary conservation with the mammalian enzyme, well-developed genetic toolkit, and complex physiology for studies in specific cell types and tissues. Here, we isolate complex I from Drosophila and determine its structure, revealing a 43-subunit assembly with high structural homology to its 45-subunit mammalian counterpart, including a hitherto unknown homologue to subunit NDUFA3. The major conformational state of the Drosophila enzyme is the mammalian-type 'ready-to-go' active resting state, with a fully ordered and enclosed ubiquinone-binding site, but a subtly altered global conformation related to changes in subunit ND6. The mammalian-type 'deactive' pronounced resting state is not observed: in two minor states, the ubiquinone-binding site is unchanged, but a deactive-type π-bulge is present in ND6-TMH3. Our detailed structural knowledge of Drosophila complex I provides a foundation for new approaches to disentangle mechanisms of complex I catalysis and regulation in bioenergetics and physiology.


Assuntos
Drosophila melanogaster , Complexo I de Transporte de Elétrons , Animais , Microscopia Crioeletrônica , Drosophila melanogaster/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/ultraestrutura , Mitocôndrias/metabolismo , Ubiquinona/metabolismo
9.
Science ; 379(6630): 351-357, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701435

RESUMO

The molecular mode of action of biguanides, including the drug metformin, which is widely used in the treatment of diabetes, is incompletely characterized. Here, we define the inhibitory drug-target interaction(s) of a model biguanide with mammalian respiratory complex I by combining cryo-electron microscopy and enzyme kinetics. We interpret these data to explain the selectivity of biguanide binding to different enzyme states. The primary inhibitory site is in an amphipathic region of the quinone-binding channel, and an additional binding site is in a pocket on the intermembrane-space side of the enzyme. An independent local chaotropic interaction, not previously described for any drug, displaces a portion of a key helix in the membrane domain. Our data provide a structural basis for biguanide action and enable the rational design of medicinal biguanides.


Assuntos
Biguanidas , Complexo I de Transporte de Elétrons , Animais , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Metformina/farmacologia , Mitocôndrias/metabolismo , Biguanidas/farmacologia
10.
Curr Opin Struct Biol ; 77: 102447, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087446

RESUMO

Respiratory complex I (NADH:ubiquinone oxidoreductase) is a multi-subunit, energy-transducing mitochondrial enzyme that is essential for oxidative phosphorylation and regulating NAD+/NADH pools. Despite recent advances in structural knowledge and a long history of biochemical analyses, the mechanism of redox-coupled proton translocation by complex I remains unknown. Due to its ability to separate molecules in a mixed population into distinct classes, single-particle electron cryomicroscopy has enabled identification and characterisation of different complex I conformations. However, deciding on their catalytic and/or regulatory properties to underpin mechanistic hypotheses, especially without detailed biochemical characterisation of the structural samples, has proven challenging. In this review we explore different mechanistic interpretations of the closed and open states identified in cryoEM analyses of mammalian complex I.


Assuntos
Complexo I de Transporte de Elétrons , NAD , Animais , Complexo I de Transporte de Elétrons/química , Microscopia Crioeletrônica , NAD/química , NAD/metabolismo , Ubiquinona/química , Ubiquinona/metabolismo , Oxirredução , Mamíferos/metabolismo
11.
Nat Commun ; 13(1): 2758, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589726

RESUMO

Mitochondrial complex I is a central metabolic enzyme that uses the reducing potential of NADH to reduce ubiquinone-10 (Q10) and drive four protons across the inner mitochondrial membrane, powering oxidative phosphorylation. Although many complex I structures are now available, the mechanisms of Q10 reduction and energy transduction remain controversial. Here, we reconstitute mammalian complex I into phospholipid nanodiscs with exogenous Q10. Using cryo-EM, we reveal a Q10 molecule occupying the full length of the Q-binding site in the 'active' (ready-to-go) resting state together with a matching substrate-free structure, and apply molecular dynamics simulations to propose how the charge states of key residues influence the Q10 binding pose. By comparing ligand-bound and ligand-free forms of the 'deactive' resting state (that require reactivating to catalyse), we begin to define how substrate binding restructures the deactive Q-binding site, providing insights into its physiological and mechanistic relevance.


Assuntos
Complexo I de Transporte de Elétrons , Ubiquinona , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/metabolismo , Mamíferos/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredução , Ubiquinona/metabolismo
12.
J Am Chem Soc ; 144(15): 6791-6801, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380814

RESUMO

Respiratory complex I is an essential metabolic enzyme that uses the energy from NADH oxidation and ubiquinone reduction to translocate protons across an energy transducing membrane and generate the proton motive force for ATP synthesis. Under specific conditions, complex I can also catalyze the reverse reaction, Δp-linked oxidation of ubiquinol to reduce NAD+ (or O2), known as reverse electron transfer (RET). Oxidative damage by reactive oxygen species generated during RET underpins ischemia reperfusion injury, but as RET relies on several converging metabolic pathways, little is known about its mechanism or regulation. Here, we demonstrate Δp-linked RET through complex I in a synthetic proteoliposome system for the first time, enabling complete kinetic characterization of RET catalysis. We further establish the capability of our system by showing how RET in the mammalian enzyme is regulated by the active-deactive transition and by evaluating RET by complex I from several species in which direct assessment has not been otherwise possible. We thus provide new insights into the reversibility of complex I catalysis, an important but little understood mechanistic and physiological feature.


Assuntos
Complexo I de Transporte de Elétrons , Elétrons , Animais , Catálise , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Mamíferos/metabolismo , NAD/metabolismo , Oxirredução
13.
J Biol Chem ; 298(3): 101602, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063503

RESUMO

Mitochondrial complex I (NADH:ubiquinone oxidoreductase), a crucial enzyme in energy metabolism, captures the redox potential energy from NADH oxidation/ubiquinone reduction to create the proton motive force used to drive ATP synthesis in oxidative phosphorylation. High-resolution single-particle electron cryo-EM analyses have provided detailed structural knowledge of the catalytic machinery of complex I, but not of the molecular principles of its energy transduction mechanism. Although ubiquinone is considered to bind in a long channel at the interface of the membrane-embedded and hydrophilic domains, with channel residues likely involved in coupling substrate reduction to proton translocation, no structures with the channel fully occupied have yet been described. Here, we report the structure (determined by cryo-EM) of mouse complex I with a tight-binding natural product acetogenin inhibitor, which resembles the native substrate, bound along the full length of the expected ubiquinone-binding channel. Our structure reveals the mode of acetogenin binding and the molecular basis for structure-activity relationships within the acetogenin family. It also shows that acetogenins are such potent inhibitors because they are highly hydrophobic molecules that contain two specific hydrophilic moieties spaced to lock into two hydrophilic regions of the otherwise hydrophobic channel. The central hydrophilic section of the channel does not favor binding of the isoprenoid chain when the native substrate is fully bound but stabilizes the ubiquinone/ubiquinol headgroup as it transits to/from the active site. Therefore, the amphipathic nature of the channel supports both tight binding of the amphipathic inhibitor and rapid exchange of the ubiquinone/ubiquinol substrate and product.


Assuntos
Acetogeninas , Complexo I de Transporte de Elétrons , Acetogeninas/antagonistas & inibidores , Acetogeninas/metabolismo , Acetogeninas/farmacologia , Animais , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/metabolismo , Camundongos , NAD/metabolismo , Oxirredução , Relação Estrutura-Atividade , Ubiquinona/metabolismo
14.
PNAS Nexus ; 1(5): pgac276, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712358

RESUMO

Respiratory complex I [NADH:ubiquinone (UQ) oxidoreductase] captures the free energy released from NADH oxidation and UQ reduction to pump four protons across an energy-transducing membrane and power ATP synthesis. Mechanisms for long-range energy coupling in complex I have been proposed from structural data but not yet evaluated by robust biophysical and biochemical analyses. Here, we use the powerful bacterial model system Paracoccus denitrificans to investigate 14 mutations of key residues in the membrane-domain Nqo13/ND4 subunit, defining the rates and reversibility of catalysis and the number of protons pumped per NADH oxidized. We reveal new insights into the roles of highly conserved charged residues in lateral energy transduction, confirm the purely structural role of the Nqo12/ND5 transverse helix, and evaluate a proposed hydrated channel for proton uptake. Importantly, even when catalysis is compromised the enzyme remains strictly coupled (four protons are pumped per NADH oxidized), providing no evidence for escape cycles that circumvent blocked proton-pumping steps.

15.
Sci Adv ; 7(20)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33990335

RESUMO

Mitochondrial complex I (NADH:ubiquinone oxidoreductase), a major contributor of free energy for oxidative phosphorylation, is increasingly recognized as a promising drug target for ischemia-reperfusion injury, metabolic disorders, and various cancers. Several pharmacologically relevant but structurally unrelated small molecules have been identified as specific complex I inhibitors, but their modes of action remain unclear. Here, we present a 3.0-Å resolution cryo-electron microscopy structure of mammalian complex I inhibited by a derivative of IACS-010759, which is currently in clinical development against cancers reliant on oxidative phosphorylation, revealing its unique cork-in-bottle mechanism of inhibition. We combine structural and kinetic analyses to deconvolute cross-species differences in inhibition and identify the structural motif of a "chain" of aromatic rings as a characteristic that promotes inhibition. Our findings provide insights into the importance of π-stacking residues for inhibitor binding in the long substrate-binding channel in complex I and a guide for future biorational drug design.

16.
Sci Rep ; 11(1): 10143, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980947

RESUMO

Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a crucial metabolic enzyme that couples the free energy released from NADH oxidation and ubiquinone reduction to the translocation of four protons across the inner mitochondrial membrane, creating the proton motive force for ATP synthesis. The mechanism by which the energy is captured, and the mechanism and pathways of proton pumping, remain elusive despite recent advances in structural knowledge. Progress has been limited by a lack of model systems able to combine functional and structural analyses with targeted mutagenic interrogation throughout the entire complex. Here, we develop and present the α-proteobacterium Paracoccus denitrificans as a suitable bacterial model system for mitochondrial complex I. First, we develop a robust purification protocol to isolate highly active complex I by introducing a His6-tag on the Nqo5 subunit. Then, we optimize the reconstitution of the enzyme into liposomes, demonstrating its proton pumping activity. Finally, we develop a strain of P. denitrificans that is amenable to complex I mutagenesis and create a catalytically inactive variant of the enzyme. Our model provides new opportunities to disentangle the mechanism of complex I by combining mutagenesis in every subunit with established interrogative biophysical measurements on both the soluble and membrane bound enzymes.


Assuntos
Respiração Celular , Complexo I de Transporte de Elétrons/metabolismo , Paracoccus denitrificans/metabolismo , Catálise , Transporte de Elétrons , Óperon , Proteínas Recombinantes de Fusão , Especificidade por Substrato
17.
PLoS Pathog ; 17(3): e1009301, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33651838

RESUMO

The mitochondrial electron transport chain (mETC) and F1Fo-ATP synthase are of central importance for energy and metabolism in eukaryotic cells. The Apicomplexa, important pathogens of humans causing diseases such as toxoplasmosis and malaria, depend on their mETC in every known stage of their complicated life cycles. Here, using a complexome profiling proteomic approach, we have characterised the Toxoplasma mETC complexes and F1Fo-ATP synthase. We identified and assigned 60 proteins to complexes II, IV and F1Fo-ATP synthase of Toxoplasma, of which 16 have not been identified previously. Notably, our complexome profile elucidates the composition of the Toxoplasma complex III, the target of clinically used drugs such as atovaquone. We identified two new homologous subunits and two new parasite-specific subunits, one of which is broadly conserved in myzozoans. We demonstrate all four proteins are essential for complex III stability and parasite growth, and show their depletion leads to decreased mitochondrial potential, supporting their assignment as complex III subunits. Our study highlights the divergent subunit composition of the apicomplexan mETC and F1Fo-ATP synthase complexes and sets the stage for future structural and drug discovery studies.


Assuntos
Transporte de Elétrons/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Toxoplasma/metabolismo , Animais , Humanos , Parasitos/metabolismo , Proteômica/métodos , Proteínas de Protozoários/metabolismo , Toxoplasmose/metabolismo
18.
J Biol Chem ; 296: 100474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33640456

RESUMO

Respiratory complex I (NADH:ubiquinone oxidoreductase), the first enzyme of the electron-transport chain, captures the free energy released by NADH oxidation and ubiquinone reduction to translocate protons across an energy-transducing membrane and drive ATP synthesis during oxidative phosphorylation. The cofactor that transfers the electrons directly to ubiquinone is an iron-sulfur cluster (N2) located in the NDUFS2/NUCM subunit. A nearby arginine residue (R121), which forms part of the second coordination sphere of the N2 cluster, is known to be posttranslationally dimethylated but its functional and structural significance are not known. Here, we show that mutations of this arginine residue (R121M/K) abolish the quinone-reductase activity, concomitant with disappearance of the N2 signature from the electron paramagnetic resonance (EPR) spectrum. Analysis of the cryo-EM structure of NDUFS2-R121M complex I at 3.7 Å resolution identified the absence of the cubane N2 cluster as the cause of the dysfunction, within an otherwise intact enzyme. The mutation further induced localized disorder in nearby elements of the quinone-binding site, consistent with the close connections between the cluster and substrate-binding regions. Our results demonstrate that R121 is required for the formation and/or stability of the N2 cluster and highlight the importance of structural analyses for mechanistic interpretation of biochemical and spectroscopic data on complex I variants.


Assuntos
Complexo I de Transporte de Elétrons/química , Proteínas Fúngicas/química , Proteínas Ferro-Enxofre/química , Proteínas Mitocondriais/química , Yarrowia/enzimologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/ultraestrutura , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestrutura , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/ultraestrutura , Estabilidade Proteica , Yarrowia/genética
19.
Nat Commun ; 12(1): 707, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514727

RESUMO

Mitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia-reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the "deactive" state, usually formed only after prolonged inactivity. Despite its tendency to adopt the "deactive" state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.


Assuntos
Complexo I de Transporte de Elétrons/ultraestrutura , Mitocôndrias/patologia , Traumatismo por Reperfusão Miocárdica/patologia , NADH Desidrogenase/genética , Espécies Reativas de Oxigênio/metabolismo , Substituição de Aminoácidos , Animais , Microscopia Crioeletrônica , DNA Mitocondrial/genética , Modelos Animais de Doenças , Resistência à Doença/genética , Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Preparação de Coração Isolado , Leucina/genética , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Traumatismo por Reperfusão Miocárdica/genética , NAD/metabolismo , NADH Desidrogenase/metabolismo , NADH Desidrogenase/ultraestrutura , Oxirredução , Mutação Puntual , Prolina/genética
20.
Biochim Biophys Acta Bioenerg ; 1862(3): 148355, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33321110

RESUMO

F1FO-ATP synthase is a crucial metabolic enzyme that uses the proton motive force from respiration to regenerate ATP. For maximum thermodynamic efficiency ATP synthesis should be fully reversible, but the enzyme from Paracoccus denitrificans catalyzes ATP hydrolysis at far lower rates than it catalyzes ATP synthesis, an effect often attributed to its unique ζ subunit. Recently, we showed that deleting ζ increases hydrolysis only marginally, indicating that other common inhibitory mechanisms such as inhibition by the C-terminal domain of the ε subunit (ε-CTD) or Mg-ADP may be more important. Here, we created mutants lacking the ε-CTD, and double mutants lacking both the ε-CTD and ζ subunit. No substantial activation of ATP hydrolysis was observed in any of these strains. Instead, hydrolysis in even the double mutant strains could only be activated by oxyanions, the detergent lauryldimethylamine oxide, or a proton motive force, which are all considered to release Mg-ADP inhibition. Our results establish that P. denitrificans ATP synthase is regulated by a combination of the ε and ζ subunits and Mg-ADP inhibition.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Paracoccus denitrificans/química , Subunidades Proteicas/química , ATPases Translocadoras de Prótons/química , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrólise , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...